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Abstract. We present a prototype application for graph-based data ex-
ploration and mining, with particular emphasis on scientific data. The
application has a Flash-based graphical interface and uses semantic infor-
mation from the data sources to keep this interface as intuitive as possi-
ble. Data can be accessed from local and remote databases and files. The
user can generate a number of graphs that represent different views of
the data. Graphs can be explored using an interactive visual browser, or
graph-analytic algorithms. We demonstrate the approach using marine
sediment data, and show that differences in benthic species compositions
in two Antarctic bays are related to heavy metal contamination.

1 Introduction

Structured graphs have been recognised as an effective framework for scientific
data mining — e.g. [1, 2]. A graph consists of a set of nodes connected by edges. In
the simplest case, each node represents an entity of interest, and edges between
nodes represent relationships between entities. Graphs thus provide a natural
framework for investigating relational, spatial, temporal, and geometric data [2].
Graphs have also seen a recent explosion in popularity in science, as network
structures have been found in a variety of fields, including social networks [3, 4],
trophic webs [5], and the structures of chemical compounds [6–8]. Networks in
these fields provide both a natural representation of data, as well as analytical
tools that give insights not easily gained from other perspectives.

The Australian Antarctic Data Centre (AADC) sought a graph-based visual-
isation and exploration tool that could be used both as a component of in-house
mining activities, as well as by clients undertaking scientific analyses.

The broad requirements of this tool were:

1. Provide functionality to construct, view, and explore graph structures, and
apply graph-theoretic algorithms.

2. Able to access and integrate data from a number of sources. Data of interest
typically fall into one of three categories:



– databases within the AADC (e.g. biodiversity, automatic weather sta-
tions, and state of the environment reporting databases). These databases
are developed and maintained by the AADC, and so have a consistent
structure and are directly accessible.

– flat data files (including external remote sensed environmental data such
as sea ice concentration [9], data collected and held by individual scien-
tists, and data files held in the AADC that have not yet been migrated
into actively-maintained databases).

– web-accessible (external) databases. Several initiatives are under way
that will enable scientists to share data across the web (e.g. GBIF [10]).

3. Be web browser-based. A browser-based solution would allow the tool to be
integrated with the AADC’s existing web pages, and thus allow clients to
explore the data sets before downloading. It would also allow any bandwidth-
intensive activities to be carried out at the server end, an important consid-
eration for scientists on Antarctic bases wishing to use the tool.

4. Have an intuitive graphical interface (suitable for a general audience) that
would also provide sufficient flexibility for more advanced users (expected to
be mostly internal scientists).

5. Integrated with the existing AADC database structure. To allow the interface
to be as simple as possible, we needed to make use of the existing data
structures and environments in the AADC. For example, the AADC keeps a
data dictionary, which provides limited semantic information about AADC
data, including the measurement scale type (nominal, ordinal, interval, or
ratio) of a variable. This information would allow the application to make
informed processing decisions (such as which dissimilarity metric or measure
of central tendency to use for a particular variable) and thus minimise the
complexity of the interface.

Existing software that we were aware of met some but not all of these re-
quirements. A summary of a selection of graph software is presented in Table
1 (an exhaustive review of all available graph software is beyond the scope of
this paper). This paper describes a prototype tool that can be used to create
and explore graph structures from a variety of data sources. The graphical in-
terface has been written as a Flash application; the server-side code is written
in ColdFusion (our primary application development environment). The inter-
face can also accept text-based commands for users wishing additional flexibility.

2 Methods

The exploratory analysis process can be divided into three main stages — graph
construction; visual, interactive exploration; and the application of specific ana-
lytical algorithms. In practice, these components would be used in an interactive,
cyclical exploratory process. We discuss each of these aspects in turn.



Table 1. A functional summary of a selection of graph software. BG: the package
provides functionality for constructing graphs from tabular or other data (manual graph
construction excluded); DB,WS: direct access to data from databases/web services;
L&D: provides tools for the layout and display of graphs; A: provides algorithms for
the statistical analysis of graphs; Int.: interface type; BB: is web browser-based. †Small
graphs only. ‡Designed for large graphs. *Limited functionality when run as an applet

Package BG DB WS L&D A Int. BB Summary

GGobi[28] ✓ ✓ ✗ ✓† ✗ GUI ✗ General data visualisation system with
some graph capabilities

Zoomgraph[29] ✓ ✓ ✗ ✓‡ ✓ Text ✓* Zoomable viewer with database-driven
back end

UCINET[31] ✓ ✓ ✓ GUI ✗ Popular social network analysis pack-
age

Pajek[30] ✗ ✓‡ ✓ GUI ✗ Analysis and visualization of large net-
works

Tulip[34] ✗ ✓‡ ✓ GUI ✗ Large graph layout and visualisation

LGL[35] ✗ ✓‡ ✗ GUI ✓ Large graph layout
GraphViz [36] ✗ ✓ ✗ Text ✗ Popular layout package
SUBDUE[13] ✗ ✗ ✓ Text ✗ Subgraph analysis package

2.1 Graph construction

Currently, data can be accessed from one or more local or remote databases (lo-
cal in this context means “within the AADC”) or user files. Accessing multiple
data sources allows a user to integrate their data with other databases, but is
predictably made difficult by heterogeneity across sources. We extract data from
local databases using SQL statements; either directly or mediated by graphical
widgets. Local files can be uploaded using http/get and are expected to be in
comma-separated text format. Users are encouraged to use standardised column
names (as defined by the AADC data dictionary), allowing the semantic advan-
tages of the data dictionary to be realised for file data. Remote databases can be
accessed using web services. Initially we have provided access only to GBIF data
[10] through the DiGIR protocol. Data from web service sources are described
by XML schema, which can be used in a similar manner to the data dictionary
to provide limited semantic information.

To construct a graph representation of these data, the user must specify
which variables are to be used to form the nodes, and a means of forming edges
between nodes. Nodes are formed from the discrete values (or n-tuples) of one or
more variables in the database. The graphical interface provides a list of available
data sources, and once a data source is selected, a list of all variables provided
by that data source. This information comes from the column names in a user
file or database table, or from the “concepts” list of a DiGIR XML resource
file. Available semantic information is used to decide how to discretise the node
variables. Continuous variables need to be discretised to form individual nodes.



A simple equal-interval binning option is provided for this purpose. Categorical
or ordinal (i.e. discrete) variables need no discretisation, and so this dialogue is
not shown unless necessary.

Once defined, each node is assigned a set of attribute data. These data are
potentially drawn from all other columns in the database. The graphical inter-
face allows attribute data to be drawn from a different data source provided
that the sources can be joined using a single variable. More complex joins can
be achieved using text commands. Attribute data are used to create the connec-
tivity of the graph. Nodes that share attribute values are connected by edges,
which are optionally weighted to reflect the strength of the linkage between the
nodes. The application automatically chooses a weighting scheme that is appro-
priate to the attribute data type; this choice can be overridden by the user if
desired.

Once data sources and variables have been defined, the application parses
the node attributes to create edges, and builds an XML (in fact GXL, [11])
document that describes the graph. The graph can be either visually explored,
or processed with one of many graph-based analytic algorithms.

2.2 Graph visualisation

Graph structures are displayed to the user in an interactive graph browser. The
browser is a modified version of the Touchgraph LinkBrowser [12], which is an
open-source Java tool for graph layout and interaction. Layout is accomplished
using a spring-model method, in which each edge is considered to be a spring,
and the node positions are chosen to minimise the global energy of the spring
system. Nodes also have mutual repulsion in order to avoid overlap in the layout.

While small graphs can reasonably be displayed in their entirety, large graphs
often cannot be displayed in a comprehensible form on limited screen real estate.
We solve this problem by allowing large graphs to be explored as a dynamic se-
ries of smaller graphs (see below). We discuss alternative approaches, such as
hierarchical views with varying level of detail, in the discussion.

Interaction with the user is achieved through three main processes: node se-
lection, neighbourhood adjustment, and edge manipulation. The displayed graph
is focused on a selected node. The neighbourhood setting determines how much
of the surrounding graph is displayed at any one time. This mechanism allows
local regions of a graph to be displayed. Edge manipulation can be done using a
slider that sets the weight threshold below which edges are not displayed. It is
difficult to judge a priori which edges to filter out, as weak edges can obscure the
graph structure in some cases but may be crucial in others. A practical solution
is to create a graph with relatively high connectivity (many weak links), and
then allow the user to remove links in an interactive manner.



The graph layout is done dynamically, and changes smoothly as the user
varies the interactive settings. The graph layout uses various visual properties
of the nodes and edges to convey information, including colour, shape, label,
and mouse-over popup windows. We also allow attributes of the nodes to set the
graph layout. This is particularly useful with spatial and temporal data.

An alternative visualisation option is to save the XML document and import
it into the user’s preferred graph software. This might be appropriate with ex-
tremely large graphs, since this visualisation tool does not work well with such
graphs.

2.3 Analytical tools

The fields of graph theory and data mining have developed a range of algorithms
that assess specific properties of graph structures, including subgraph analyses
(e.g. [13–17]), connectivity and flow [8], graph simplification [5, 18], clustering,
and outlier detection [19, 20]. Many of the properties assessed by these tools
have interpretations in terms of real-world phenomena (e.g. [21–23]) that are
not easily assessed from non-graph representations of the data. These provide
useful analytical information to complement existing scientific analyses, and also
the possibility of building graphs based on analyses of other graphs.

A simple but very useful example is an operator that allows the similarity be-
tween two graphs to be calculated. We use an edge-matching metric, equal to the
number of edges that appear in both graphs, as a fraction of the total number of
unique edges in the two graphs (an edge is considered to appear in both graphs
if the same two nodes appear in both graphs, and they are joined by an edge
in both graphs). This provides a simple method for exploring the relationships
between graphs, and also a mechanism for creating graphs of graphs: given a set
of graphs, one can construct another graph G in which each graph in the set is
represented by a node. Using a graph similarity operator, one can calculate the
similarity between each pair of graphs in the set, and use this similarity infor-
mation to create weighted edges between the nodes in G. The visualisation tool
allows a node in a graph to be hyperlinked to another graph, so that each node
in a graph of graphs can be explored in its own right. We demonstrate these
ideas in the Results section, below.

We have chosen not to implement other algorithms at this stage, concentrat-
ing instead on the graph construction and visual exploratory aspects. We raise
future algorithm development options in the Discussion section, below.



Fig. 1. A graph of Antarctic marine sample sites, linked by their species attribute
data. Sites are clearly separated into two clusters on the basis of their species, indicat-
ing two distinct types of species assemblage. Node labels are of the form XBySsPpr
and denote the position of the sample in the nested experimental hierarchy. BBy de-
notes samples from one of two locations in contaminated Brown Bay and OBy denotes
uncontaminated O’Brien Bay; s denotes the site number within location; p denotes the
plot number within site; and r denotes the core replicate number within plot

3 Results

We use a small Antarctic data set to demonstrate the graph construction and
visualisation tools in the context of an exploratory scientific investigation.

Australia has an on-going research programme into the environmental im-
pacts of human occupation in Antarctica (see http://www.aad.gov.au/
default.asp?casid=13955). A recent component of this programme was an
investigation into the relationships between benthic species assemblages and
pollution near Australia’s Casey station [24]. Marine sediment samples were
collected from two sites in Brown Bay, which is adjacent to a disused rubbish tip
and is known to have high levels of many contaminants. Samples were collected
at approximately 30 m and 150 m from the tip. Control samples were collected
from two sites in nearby, uncontaminated O’Brien Bay. Four replicate samples
were collected from two plots at each site, giving a total of 32 samples. Sedi-
ment samples were collected by divers using plastic corers and analysed for fauna
(generally identified to species or genus level) and heavy metal concentrations
(Pb, Cd, Zn, As, Cr, Cu, Fe, Ni, Ag, Sn, Sb). These metals are found in man-
made products (e.g. batteries and steel alloys) and can be used as indicators of
anthropogenic contamination. Details of the experimental methods are given in
[24].

This data set has a very simple structure, comprising a total of 14 variables:
site name, species id, species abundance, and measured concentrations of
the 11 metals listed above. Site latitude and longitude were not recorded but
the site name string provides information to the site/plot/replicate level (see
Fig. 1 caption). All of the above information appears in one database table. The
species id identifier links to the AADC’s central biodiversity database, which
provides additional information about each species (although we do not use this
additional information in the example presented here). Standard practice would



Fig. 2. A graph of Antarctic marine species, linked by their site attribute data. This
graph provides complementary information to that shown in Fig. 1, and confirms that
two distinct species assemblages exist, with possible outliers GammIIA, GammI, and
nephty. Eight other disconnected outlier species are not shown

normally also see a separate table for the sample site details, but in this case
there are only a small number of sample sites that are specific to this data set.

Despite the simplicity of the data set, there are a large number of graphs that
can be generated. The key questions to be answered during the original investi-
gation related to spatial patterns in species assemblages, and the relationships
of any such patterns to contamination (heavy metal concentrations).

Spatial patterns in species assemblages can be explored using sites as nodes,
and edges generated on the basis of species attribute data. To create this graph,
we needed only to select site name as entities, and species id as attributes
in the graphical interface. Both of these variables were recognised by the data
dictionary as categorical, and so no discretisation was needed. Furthermore, an
edge weighting function suitable for species data was automatically selected.
This function is based on the Bray-Curtis dissimilarity, which is commonly used
with ecological data:

wij = 1−
∑

k

|xik − xjk|
(xik + xjk)

, (1)

where wij denotes the weight of the edge from node i to node j, and xik denotes
the kth attribute of node i.

The resultant graph is shown in Fig. 1. Weak edges have been pruned, leaving
a core structure of two distinct clusters of sites: the left-hand cluster corresponds
to sites from O’Brien Bay; the right-hand cluster Brown Bay. This strong clus-
tering suggests that the species assemblages of the two bays are distinct. Fur-
thermore, each cluster shows spatial autocorrelation — that is, samples from a
given site in a given bay are most similar to other samples from the same site
(e.g. BB3 nodes are generally linked to other BB3 nodes). We generated an al-
ternative view of the data by swapping the definitions for entity and attribute,
giving a graph of species id nodes with edges calculated on the basis of site id
attribute data (Fig. 2). This graph confirms the presence of two broadly distinct
species assemblages, but suggests that there are several outlier species that may



Fig. 3. The same graph as Fig. 1, but with edge colouring changes to indicate similarity
of chromium between sites. Darker edges are those that are better “explained” by
chromium patterns (see text for details). The O’Brien Bay cluster (left) has a strong
similarity of chromium values within it, whereas the Brown Bay cluster has dissimilar
values both within itself and to the O’Brien Bay cluster. These results, and similar
results with other metal variables, suggest that species differences between the two
bays may be related to heavy metal concentrations

diverge from this bimodal pattern of spatial distribution.

Having established some patterns in species assemblages, we wish to ex-
plore the relationships between these patterns and measured metal contamina-
tion. A convenient method for this is through the graph similarity operator.
We generated a second graph of sites, using chromium as attribute data (graph
not shown), and made an edge-wise weight comparison between the site-species
graph and the site-chromium graph. The result is shown in Fig. 3. The structure
of this graph is identical to that in Fig. 1, but the colouring of the edges indicates
the weight similarity. Darker grey indicates edges that have similar weights in
both the site-species and site-chromium graphs. Samples from the uncontam-
inated O’Brien Bay have similar chromium values (in fact, mostly near zero).
More notably, the single edge linking the O’Brien Bay cluster to the Brown Bay
cluster is not well explained in terms of chromium, suggesting that the clustering
might be related to differences in chromium values. (The general dissimilarity
between chromium values in the Brown Bay cluster is an artefact of their high
but variable values, which have fallen into different bins during the discretisation
process. We discuss the problem of discretising attributes below). Similar results
were obtained using the other metal variables, supporting the notion that the
benthic species assemblages of these bays is related to heavy metal contamina-
tion.

Finally, we use a graph of graphs to explore the similarities between the spa-
tial patterns of the various heavy metals. We generated 11 graphs, one for each
metal, using sites as entities and the metal as attribute data. The pairwise simi-
larities between each of these graphs were calculated. Fig. 4 shows the resultant
graph, in which each node represents an entire site-metal graph, and the edges
indicate the similarities between those graphs. The graph suggests that copper,
lead, iron, and tin are distributed similarly, and that their distribution is differ-
ent to that of nickel, chromium, and the other metals. This was confirmed by
inspecting histograms of metal values at each location: values of copper, lead,
iron, and tin were higher at one of the Brown Bay locations (the one closest to



Fig. 4. A graph of graphs. Each node represents an entire subgraph — in this case,
a graph of sites linked by a metal attribute. This graph of graphs indicates that the
spatial distributions of copper, lead, iron, and tin are similar, and different to those of
nickel, chromium, and the other metals

the tip) than the other, whereas the remaining metals showed similar levels at
each of the two Brown Bay locations.

4 Discussion

Graphs have been previously been recognised for their value in data mining and
exploratory analyses. However, existing software tools for such analyses (that
we were aware of) did not meet our requirements. We have outlined a prototype
web-based tool that builds graph structures from data contained in databases
or files, and presents the graphs for visual exploration or algorithmic analysis.

The construction phase requires the user to define the variables that will
be used to form the graph nodes. While there may be certain definitions that
are logical or intuitive in the context of a particular database (for example, it
is probably intuitive to think of species as nodes when exploring a database of
wildlife observations), the nodes can in fact be an arbitrary combination of any
of the available variables. This is a powerful avenue for interaction and flexibility,
as allows the user to interpret the data from a variety of viewpoints, a key to
successful data mining [25].

One of the notable limitations of our current implementation is the require-
ment that attribute data be discrete. (Edges are only formed between nodes that
have an exact match in one or more attributes). Continuous attributes must be
discretised, which is both wasteful of information and can lead to different graph
structures with different choices of discretisation method. Discretisation is po-
tentially particularly problematic for Antarctic scientific data sets, which tend
not only to be relatively small but also sparse. Sparsity will lead to few exact
matches in discretised data, and to graphs that may have too few edges to con-
vey useful information. Future development will therefore focus on continuous
attribute data.



The visualisation tool that we have discussed is best suited to relatively small
graphs. This is generally not an issue with Antarctic scientific data sets, which
tend to be of manageable size, but conventional data mining of very large data
sets would be problematic. Other visualisation tools, specifically designed for
large graphs (e.g. [18, 26, 27]) might be useful for visualising such graphs. FADE
[18] and MGV [26] use hierarchical views that can range from global structure
of a graph with little local detail, through to local views with full detail.

Many other packages for graph-based data exploration exist, and we have
incorporated the features of some of these into our design. The GGobi pack-
age [28] has a plugin that allows users to work directly with databases. GGobi
also ties into the open-source statistical package R to provide graph algorithms.
Zoomgraph [29] takes the same approach. This is one method of providing graph
algorithms without the cost of re-implementation. Another is simply to pass the
graph to the user, who can then use one of the many freely-available graph
software packages (e.g. [30–33]). Yet another approach, which we are currently
investigating, is the use of analytical web services. Our development has been
done in Coldfusion, which can make use of Java and can also expose any function
as a web service. This may allow us to deploy an existing Java graph library such
as Jung [33] as a set of web services. This approach would have the advantage
that external users could also make use of the algorithms, by passing their GXL
files via web service calls.
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